cyclic associativity - significado y definición. Qué es cyclic associativity
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es cyclic associativity - definición

Cyclic Number; Cyclic numbers

Operator associativity         
PROPERTY THAT DETERMINES HOW OPERATORS OF THE SAME PRECEDENCE ARE GROUPED IN THE ABSENCE OF PARENTHESES
Right associative operator; Right associative; Left-associative; Right-associative; Left associative; Left associativity; Right associativity
In programming language theory, the associativity of an operator is a property that determines how operators of the same precedence are grouped in the absence of parentheses. If an operand is both preceded and followed by operators (for example, ^ 3 ^), and those operators have equal precedence, then the operand may be used as input to two different operations (i.
Cyclic peptide         
  • α-Amanitin]]
  • [[Bacitracin]]
  • [[Ciclosporin]]
PEPTIDE CHAINS WHICH CONTAIN A CIRCULAR SEQUENCE OF BONDS
Cyclic peptides; Peptides, cyclic; Cyclic polypeptides; Cyclic protein; Cyclic polypeptide; Cyclopeptides; Cyclopeptide; Peptide macrocycle
Cyclic peptides are polypeptide chains which contain a circular sequence of bonds. This can be through a connection between the amino and carboxyl ends of the peptide, for example in cyclosporin; a connection between the amino end and a side chain, for example in bacitracin; the carboxyl end and a side chain, for example in colistin; or two side chains or more complicated arrangements, for example in amanitin.
Cyclic order         
TERNARY RELATION THAT IS CYCLIC (IF [𝑥,𝑦,𝑧] THEN [𝑧,𝑥,𝑦]), ASYMMETRIC (IF [𝑥,𝑦,𝑧] THEN NOT [𝑧,𝑦,𝑥]), TRANSITIVE (IF [𝑤,𝑥,𝑦] AND [𝑤,𝑦,𝑧] THEN [𝑤,𝑥,𝑧]) AND CONNECTED (FOR DISTINCT 𝑥,𝑦,𝑧
Cyclic sequence; Circular order; Circular ordering; Total cyclic order; Cyclically ordered set; Cyclic ordering; Complete cyclic order; Linear cyclic order; L-cyclic order; Circularly ordered set
In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "".

Wikipedia

Cyclic number

A cyclic number is an integer for which cyclic permutations of the digits are successive integer multiples of the number. The most widely known is the six-digit number 142857, whose first six integer multiples are

142857 × 1 = 142857
142857 × 2 = 285714
142857 × 3 = 428571
142857 × 4 = 571428
142857 × 5 = 714285
142857 × 6 = 857142